
Detecting Metamorphic Computer Viruses

using Supercompilation

Alexei Lisitsa and Matt Webster∗

In this paper we present a novel approach to detection of metamorphic
computer viruses by proving program equivalence using a program trans-
formation technique known as supercompilation [6, 5]. Proving program
equivalence is an undecidable problem in the general case; however, in spe-
cific cases we may find decidable or semi-decidable procedures that can prove
that a sub-class of programs are equivalent. This is of relevance for detecting
metamorphic computer viruses, which use a variety of semantics-preserving,
syntax-mutating methods for code obfuscation. The main purpose of this
obfuscation is to avoid detection by signature scanning. An important factor
here is that semantics is preserved; therefore, if we can prove using some
procedure that two different programs are equivalent, then in principle we
can detect metamorphic computer viruses using this procedure.

Supercompilation1 is a semantics-based program transformation tech-
nique [6, 5] for functional programming languages proposed by V. Turchin in
the late 1960s. A variant of symbolic execution is used for the transforma-
tion: the program is executed with a partially-defined input and that leads
to the unfolding of a potentially infinite tree of all possible computations of
the parameterised program. The tree of configurations is analysed and folded
into the finite graph of parameterised configurations and possible transitions
between them. To make folding possible a generalisation procedure can be
used. Finally, the supercompiler analyses the graph and builds the definition
of the output program based its analysis. Thus, a supercompiler implements
the mapping 〈P, e〉 7→ 〈P ′, e′〉, where P, P ′ are programs and e, e′ are their
corresponding parameterised entry points. The result of supercompilation,
in general, implements an extension of the (partial) function implemented
by the original program, i.e., P ′ produces the same outputs on the inputs
for which P terminates, but may terminate on some inputs for which P does

∗Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.
1from supervised compilation

1

not. The primary purpose of supercompilation is for specialization and op-
timization of programs. Supercompilation has also been used for program
verification [3]. Development of supercompilation has been done mainly in
the context of the functional programming language Refal [5]. SCP4 [4] is
currently the most advanced supercompiler for Refal.

Due to the fact that the resulting program is produced from a behavioural
graph of possible computations (without referring to the original syntax),
supercompilation can be seen also as a behaviour-based normalization proce-
dure2, potentially applicable for equivalence testing.

There are many methods of detecting metamorphic computer viruses in
the literature. Our approach bears some similarity to the work of Webster &
Malcolm [7] on detection of metamorphic computer viruses using algebraic
specification, in which a specification of Intel 64 was given using Maude. The
two approaches are similar in that the specification of Webster & Malcolm
and the interpreter here use a notion of stores in the definitions of the se-
mantics of the Intel 64 language. The approaches differ, however, in that the
algebraic specification of Webster & Malcolm is based on a formal syntax
and semantics of Intel 64, and the values of various variables are queried
using rewriting, whereas the semantics of Intel 64 is specified informally in
our work, and the supercompiler is used to optimise the evaluation function
parameterised by a specific program.

Our approach is also similar to the program rewriting/normalisation ap-
proach of Bruschi et al [1], as supercompilation essentially rewrites a function
corresponding to the execution of a program. Although supercompilation is
not strictly a normalisation procedure, as we cannot guarantee that in all
cases two equivalent programs will have the same normal form, the process
resembles normalisation as two functions representing different equivalent
programs may be rewritten to the same form.

1 Supercompilation for Detection

Supercompilation is a program transformation process that traces possible
generalised histories of a program in an attempt to reduce redundancy. As we
will show, we can use the supercompilation process to produce identical su-
percompiled versions of metamorphic code fragments that are behaviourally
equivalent. This is useful for the detection of metamorphic computer viruses,
which can be achieved by proving equivalence of a metamorphic computer

2At the moment we suggest this reading as semi-formal. Determining precise condi-

tions under which supercompilation would be a normalisation procedure is an interesting

problem for future investigations.

2

virus signature to some suspect code fragment. We understand equivalence
of two programs as the equality of the partial functions (mapping inputs to
outputs, or inital states to the final states) implemented by those programs.

Our technique uses a supercompiler for Refal called SCP4 [4]. We have
defined the semantics of a small subset of Intel 64 instructions using Re-
fal. Essentially, the result is a general-purpose interpreter for the Intel 64
instructions we have defined3. If we pass a program as a parameter to the
interpreter, the result is an emulation of that Intel 64 program in Refal. We
can therefore apply the supercompiler to the emulation in order to eliminate
redundancy in the program. If two syntactically-different programs are su-
percompiled to the same form, we can conclude that the programs must be
equivalent. We assume that both programs terminate on all inputs. If pro-
grams do not terminate on some inputs then equality of residual programs
provides only partial evidence for equivalence on a subset of inputs.

Example. The following three programs have the overall effect of assigning
the value 0 to the variable eax, 1 to the variable ebx and 0 (or “false”) to
the zero flag4 of the EFLAGS register:

p1 = mov eax, 0 ; mov ebx, 1 ; cmp eax, ebx

p2 = jmp 1 ; label 1: mov ebx, 1 ; mov eax, ebx ;

mov eax, ecx ; mov eax, 0 ; jmp 2 ; mov eax, ecx ;

jmp 1 ; label 2: cmp eax, ebx

p3 = mov eax, 1 ; mov ebx, 1 ; cmp eax, ebx ; je 1 ;

mov eax, 5 ; label 1: mov eax, 0 ; cmp eax, ebx ;

je 1 ; mov eax, 0

We can imagine p1 as part of the zeroth generation of a metamorphic com-
puter virus, with p2 and p3 as some obfuscated forms. Program p2 inserts
unconditional jumps, unreachable code and redundant code in order to obfus-
cate its behaviour. Program p3 uses pseudo-conditional jumps and unreach-
able code. All of these types of code metamorphosis are well-known, and have
been observed in metamorphic computer viruses [2, 7].

Applying the supercompiler to the interpreter three times, once for each
program, results in the same supercompiled Refal program:

$ENTRY Go {

3Our basic Intel 64 interpreter in Refal can be found online at http://www.csc.liv.

ac.uk/~matt/pubs/refal/1/.
4In this basic interpreter, we have modelled the zero flag only, as it was the only flag

required to implement the small instruction set used.

3

http://www.csc.liv.ac.uk/~matt/pubs/refal/1/
http://www.csc.liv.ac.uk/~matt/pubs/refal/1/

(e.101) (e.102) (e.103) (e.104) = (eax 0) (ebx 1)

(ecx e.103) (Zflag 0) ; }

In each case, the supercompiler has optimised the interpreter, parame-
terised with programs p1, p2 and p3, to the same Refal program, which simply
assigns the values 0, 1 and 0 to the variables eax, ebx and Zflag (zero flag)
respectively.

Essentially, we have translated p1, p2 and p3 into Refal, and the super-
compiler has then shown the translated forms to be equivalent. If one of these
programs was our signature, and the others were the suspect code samples,
then this technique could be used to detect a metamorphic computer virus.

We can also show what happens when we present the supercompiler with
another program, p4, that is not equivalent to p1, p2 or p3:

p4 = mov eax, 1 ; mov ebx, 1 ; cmp eax, ebx ; je 1 ;

mov eax, 5 ; label 1: mov eax, 0 ; cmp eax, ebx ;

je 1 ; mov eax, 1

In this case, the resulting supercompiled program is different to the one above:

$ENTRY Go {

(e.101) (e.102) (e.103) (e.104) = (eax 1) (ebx 1)

(ecx e.103) (Zflag 0) ; }

This case would correspond to the scenario in which the suspect code is not
infected with the metamorphic computer virus. The supercompiler, therefore,
shows that the suspect code is non-equivalent and prevents a false positive
identification.

2 Conclusion

We have shown how supercompilation can be used to prove equivalence of
programs, which can then be used to detect metamorphic computer viruses.
We based our method on a interpreter for a fragment of the Intel 64 assem-
bly programming language written in Refal. Applying the supercompilation
technique to syntactically different, but behaviourally equivalent code re-
sulted in the same “normalised” form. This can be applied to metamorphic
computer virus detection where some virus signature and some suspect code
differ syntactically; supercompilation can be applied to prove equivalence
and therefore match the signature to the suspect code.

In a practical setting, e.g., within an anti-virus software package, we as-
sume that code fragments for equivalence analysis will be extracted before

4

supercompilation. The supercompiler will then run with the two fragments
as input, and the output of the supercompiler will be analysed in order to
determine whether the two fragments are equivalent. (This analysis, in the
ideal case, is trivial when the two fragments are transformed into identical
programs by the supercompiler.) In the case where one fragment is a sig-
nature of a metamorphic computer virus, and the other fragment is some
suspect code, then the positive identification of equivalence will indicate in-
fection of the suspect code by that virus. Of course, this procedure is prone
to false negatives in the case where the supercompilation process has not
identified equivalence.

Future work will include an expansion of the Intel 64 instruction subset
used, and an application to the detection of a real-life metamorphic computer
virus. In addition, we intend to establish the theoretical constraints on our
approach, i.e., when detection by supercompilation is guaranteed to work,
and when it is not.

References

[1] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Code normal-
ization for self-mutating malware. IEEE Security & Privacy, 5(2):46–54,
2007.

[2] Arun Lakhotia and Moinuddin Mohammed. Imposing order on program
statements to assist anti-virus scanners. In Proceedings of Eleventh Work-
ing Conference on Reverse Engineering. IEEE Computer Society Press,
2004.

[3] Alexei Lisitsa and Andrei P. Nemytykh. Verification as a parameterized
testing (experiments with the SCP4 supercompiler). Journal of Pro-
gramming and Computer Software, 33(1):14–23, 2007. Translated from
Russian: Programmirovanie. No.1 (2007).

[4] Andrei P. Nemytykh. The supercompiler Scp4: General structure. In
Perspectives of System Informatics (PSI 2003): 5th International Andrei
Ershov Memorial Conference, volume 2890. Springer, 2003.

[5] Morten Heine B. Sørensen and Robert Glück. Introduction to supercom-
pilation. In Partial Evaluation: Practice and Theory, volume 1706 of
Lecture Notes in Computer Science. Springer, 1999.

[6] Valentin F. Turchin. The concept of a supercompiler. ACM Transactions
on Programming Languages and Systems, 8(3):292–325, July 1986.

[7] Matt Webster and Grant Malcolm. Detection of metamorphic com-
puter viruses using algebraic specification. Journal in Computer Virology,
2(3):149–161, December 2006. DOI: 10.1007/s11416-006-0023-z.

5

	Supercompilation for Detection
	Conclusion

