
Supercompilation for equivalence testing in

metamorphic computer viruses detection

Alexei Lisitsa and Matt Webster∗

1 Introduction

In this paper we present a novel approach to detection of metamorphic com-
puter viruses by using proving program equivalence based on program trans-
formation technique known as supercompilation [7]. Proving program equiv-
alence is an undecidable problem in the general case; however, in specific
cases we may find decidable or semi-decidable procedures that can prove
that a sub-class of programs are equivalent. This is of relevance for detecting
metamorphic computer viruses, which use a variety of semantics-preserving,
syntax-mutating methods for code obfuscation. The main purpose of this
obfuscation is to avoid detection by signature scanning. An important factor
here is that semantics is preserved; therefore, if we can prove using some
procedure that two different programs are equivalent, then in principle we
can detect metamorphic computer viruses using this procedure.

The supercompilation1 is a semantic based program transformation tech-
nique [7] for functional programming languages proposed by V. Turchin in
the early 1970s. A variant of symbolic execution is used for the transfor-
mation: the program is executed with a partially defined input and that
leads to the unfolding a potentially infinite tree of all possible computations
of the parameterized program. In the process the tree of configurations is
analysed and folded into the finite graph of parameterized configurations and
posible transitions between them. To make folding possible a generalization
procedure can be used. Finally, the supercompiler analyses the graph and
builds the definition of output program based on that. Thus, a supercom-
piler implements the mapping 〈P, e〉 7→ 〈P ′, e′〉, where P, P ′ are programs

∗Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.
A version of this paper has been presented at the Workshop on the Theory of Computer
Viruses, 2008, Nancy, 15.05.2008

1from supervised compilation

1



and e, e′ are their corresponding parameterized entry points. The result of
supercompilation, in general, implements an extension of the (partial) func-
tion implemented by the original program, i.e. P ′ produces the same outputs
on the inputs for which P terminates, but may terminate on some inputs for
which P does not. The primary purpose of supercompilation is for special-
ization and optimization of the programs. In Lisitsa & Nemytykh [3] it has
been shown that it can be used for verification as well.

Here we notice that due to the fact that resulting program is produced
from a behavioural graph of possible computations (without referring to the
original syntax) supercompilation can be seen also as, behavior-based nor-
malization procedure2, potentially applicable for the equivalence testing.

Development of supercompilation have been done mainly in the context of
functional programming language Refal of Turchin [8] and SCP4 of Nemytykh
& Turchin [5, 6] is the most advanced supercompiler for Refal.

There are many methods of detecting metamorphic computer viruses in
the literature. Our approach bears some similarity to the work of Webster
& Malcolm [10, 9] on detection of metamorphic computer viruses using alge-
braic specification, in which a specification of Intel 64 was given using Maude.
The two approaches are similar in that the specification of Webster & Mal-
colm and the interpreter here use a notion of stores in the definitions of the
semantics of the Intel 64 language. The approaches differ, however, in that
the algebraic specification of Webster & Malcolm is based on a formal syn-
tax and semantics of Intel 64, and the values of various variables are queried
using rewriting, whereas the semantics of Intel 64 is specified informally in
our work, and the supercompiler is used to optimise the evaluation function
parameterised by a specific program.

Our approach is also similar to the program rewriting/normalisation ap-
proach of Bruschi et al [1, 2], as supercompilation essentially rewrites a func-
tion corresponding to the execution of a program. Although the supercom-
pilation is not strictly a normalisation procedure, as we cannot guarantee
that in all cases two equivalent programs will have the same normal form,
the process resembles normalisation as two functions representing different
equivalent programs may be rewritten to the same form.

2At the moment we suggest this reading as semi-formal. Determining precise condi-
tions under which supercompilation would be a normalization procedure is an interesting
problem for future investigations.

2



2 Supercompilation for Detection

Supercompilation is a program transformation process that traces possible
generalized histories of a program in an attempt to reduce redundancy. As we
will show, we can use the supercompilation process to produce supercompiled
versions of metamorphic code fragments that are identical. This is useful
for the detection of metamorphic computer viruses, which can be acheived
by proving equivalence of a metamorphic computer virus signature to some
suspect code fragment. We understand equivalence for two programs as
equality of partial fucntions (mapping inputs to outputs, or inital states to
the final states) implemented by programs.

Our technique uses a supercompiler for Refal called Scp4 [5]. We define
the semantics of Intel 64 instructions operationally using Refal. Essentially,
the result is a general-purpose interpreter for the Intel 64 instructions3 we
have defined. Our interpreter can be found in the Appendix. If we pass a
program as a parameter to the interpreter, the result is an emulation of that
Intel 64 program in Refal. We can therefore apply Scp4 to the emulation in
order to eliminate redundancy in the program. If two syntactically-different
programs are supercompiled to the same form, we can conclude that the pro-
grams must be equivalent (under additional assumption that both programs
terminate on all inputs). If programs may not terminate on some inputs then
equality of residual programs provides only partial evidence for equivalence
on a subset of inputs.

Example 1 The following two programs have the overall effect of assigning
the value 5 to the variable eax, 6 to the variable ebx and 1 (or ”true”) to
the zero flag of the EFLAGS register:

p1 = mov eax, 5 ; move ebx, 5; cmp eax, ebx; move ebx, 6

p2 = mov ecx, 4 ; move eax, 1 ; mov ebx, 0 ; label 2: cmp eax, ebx ;

je 1 ; mov eax, 5; label 1: move ebx, 6; loop 2

We can imagine p1 as part of the zeroth generation of a metamorphic com-
puter virus, and p2 as some obfuscated form. Applying the supercompiler to
the interpreter twice, once for each program, results in the same supercom-
piled Refal program:

3at the moment only a small subset of instructions is covered

3



$ENTRY Go {

(e.101 )(e.102 ) (e.103 ) (e.104 ) =

(eax 5 ) (ebx 6 ) (ecx ) (Zflag 1);

}

In each case, the supercompiler has optimised the interpreter, parame-
terised with programs p1 and p2 to the same Refal program, which simply
assigns the values 5, 6 and 1 to the variables eax, ebx and Zflag 4. Es-
sentially, we have translated p1 and p2 into Refal, and the supercompiler has
then shown the translated forms to be equivalent. If one of these programs
was our signature, and the other was the suspect code, then this technique
could be used to detect a metamorphic computer virus. More examples can
be found in [4].

3 Conclusion

In a practical setting, e.g., within an anti-virus software package, we assume
that code fragments for equivalence analysis will be extracted and presented
before supercompilation. The supercompiler will then run with the two frag-
ments as input, and the output of the supercompiler will be analysed in order
to determine whether the two fragments are equivalent. This analysis, in the
ideal case, is trivial: for example, the supercompiler could simply return the
value “true” iff the two fragments are found to be equivalent. In the case
where one fragment is a signature of a metamorphic computer virus, and the
other fragment is some suspect code, then the positive identification of equiv-
alence will indicate infection of the suspect code by that virus. Of course, this
procedure is prone to false negatives in the case where the supercompilation
process has not identified equivalence.

Future work will include an expansion of the Intel 64 instruction subset
used, and an application to the detection of real-life metamorphic computer
viruses. In addition, we intend to establish the theoretical constraints on our
approach.

4For simplicity of presentation, as it is the only place where arithmetic involved at the
moment, we treat the values of counter register ecx differently from other registers. In
the interpreter the values of ecx are modelled by unary strings and decrement operation
is defined accordingly. Under such a convention the residual program assigns the value 0
to ecx register (as expected)

4



References

[1] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code
normalization for fighting self-mutating malware. In Proceedings of the
International Symposium on Secure Software Engineering, 2006.

[2] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Code normal-
ization for self-mutating malware. IEEE Security & Privacy, 5(2):46–54,
2007.

[3] Lisitsa, A.P., Nemytykh, A.P.: Verification as a Parameterized Testing
(Experiments with the SCP4 Supercompiler). Programmirovanie. No.1
(2007) (In Russian). English translation in J. Programming and Com-
puter Software, Vol. 33, No.1 (2007) 14–23

[4] A. Lisitsa, M. Webster: Detecting Metamorphic Computer Viruses using
Supercompilation. In Proceedings of Workshop on Theory of Computer
Viruses, 2008 (to appear), 5p

[5] A. P. Nemytykh. The Supercompiler Scp4: General Structure. (Extended
abstract). Proceeding of the PSI’03,, LNCS, vol. 2890, pp: 162-170, 2003

[6] A. P. Nemytykh and V. F. Turchin. The Supercompiler Scp4: sources, on-
line demonstration. http://www.botik.ru/pub/local/scp/refal5/, 2000.

[7] V.F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems, 8:292–325, 1986.

[8] V. F. Turchin. Refal-5, Programming Guide and Reference Manual. New
England Publishing Co., Holyoke, Massachusetts, 1989. (electronic ver-
sion: http://www.botik.ru/pub/local/scp/refal5/ ,2000.).

[9] Matt Webster and Grant Malcolm. Detection of metamorphic and
virtualization-based malware using algebraic specification. In Proceedings
of the 17th Annual European Institute for Computer Antivirus Research
(EICAR) Conference. To appear.

[10] Matt Webster and Grant Malcolm. Detection of metamorphic com-
puter viruses using algebraic specification. Journal in Computer Virology,
2(3):149–161, December 2006. DOI: 10.1007/s11416-006-0023-z.

5



4 Appendix. An interpreter of a subset of

Intel 64 instruction set in Refal

*$MST_FROM_ENTRY;

*$STRATEGY Applicative;

*$LENGTH 3;

*$MATCING ForReapeatedSpecialization;

* A STORE is a list of variable-value pairs, e.g.

* (eax 0) (ebx 1) (ecx 2)

* entry point for the interpreter executing program p_2 from Example 1

$ENTRY Go {(e.1) (e.2)(e.3)(e.4) =

<Exec ((control)(mov ecx (const I I I))(mov eax (const 1))(mov ebx (const 0))(label 2)

(cmp (reg eax)(reg ebx))(je 1)(mov eax (const 5))

(label 1)(mov ebx (const 6))(loop 2))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4)>;

}

* execute statement list

Exec {

* Execute jmp

* jump forward

(e.1 (control)(jmp e.label) e.2 (label e.label) e.3) e.store =

<Exec (e.1 (jmp e.label) e.2 (label e.label)(control) e.3) e.store>;

* jump backward

(e.1 (label e.label) e.2 (control)(jmp e.label) e.3 ) e.store =

<Exec (e.1 (label e.label)(control) e.2 (jmp e.label) e.3) e.store>;

*Execute mov

(e.1 (control)(mov e.2 e.3) e.4) e.store =

<Exec (e.1 (mov e.2 e.3)(control) e.4)

<mov (e.2 e.3) e.store>>;

*Execute cmp and set Zflag

(e.1 (control)(cmp (e.2) (e.3)) e.4) e.store =

<Exec (e.1 (cmp (e.2) (e.3))(control) e.4)<cmp ((e.2) (e.3)) e.store>>;

*Execute je

*If Zflag is 1, jump forward

(e.1 (control)(je e.label) e.2 (label e.label) e.3) e.4 (Zflag 1) =

<Exec (e.1 (je e.label) e.2 (label e.label)(control) e.3) e.4 (Zflag 1)>;

*If Zflag is 1, jump backward

(e.1 (label e.label) e.2 (control)(je e.label) e.3) e.4 (Zflag 1) =

<Exec (e.1 (label e.label)(control) e.2 (je e.label) e.3) e.4 (Zflag 1)>;

*If Zflag is 0 Skip

(e.1 (control)(je e.label) e.2) e.3 (Zflag 0) =

<Exec (e.1 (je e.label)(control) e.2) e.3 (Zflag 0)>;

*Skip the label

(e.1 (control)(label e.label) e.2) e.store =

<Exec (e.1 (label e.label)(control) e.2) e.store>;

* Execute "loop label1": decrement counter register ecx,

* check if counter register is 0, if

* yes go to the next instruction, if not

* go to label1.

* The integer value of the counter ecx is presented in the unary form II...III.

* Only positive values are correctly dealt with

* Exit the loop

(e.1 (control)(loop e.label) e.2) e.3 (ecx I)(Zflag e.5) =

<Exec (e.1 (loop e.label)(control) e.2) e.3 (ecx)(Zflag 1)>;

* Go to the label backward

(e.1 (label e.label) e.2 (control)(loop e.label) e.3) e.4 (ecx I I e.ecx)(Zflag e.5) =

<Exec (e.1 (label e.label)(control) e.2 (loop e.label) e.3) e.4 (ecx I e.ecx)(Zflag 0)>;

* Go to the label forward

(e.1 (control)(loop e.label) e.2 (label e.label) e.3) e.4 (ecx I I e.ecx)(Zflag e.5) =

<Exec (e.1 (loop e.label) e.2 (label e.label)(control) e.3) e.4 (ecx I e.ecx)(Zflag 0)>;

6



*End of the statements list, nothing to execute

(e.1 (control))e.store = e.store;

}

* Effects of mov execution

mov {

(eax (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.1)(ebx e.3)(ecx e.4)(Zflag e.5);

(eax (reg eax))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4);

(eax (reg ebx))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.2)(ebx e.2)(ecx e.3)(Zflag e.4);

(ebx (reg eax))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.1)(ecx e.3)(Zflag e.4);

(ebx (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.2)(ebx e.1)(ecx e.4)(Zflag e.5);

(ecx (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.2)(ebx e.3)(ecx e.1)(Zflag e.5);

}

* Effects of cmp execution

cmp {

((reg eax)(reg ebx))(eax e.1)(ebx e.1)(ecx e.2)(Zflag e.3) = (eax e.1)(ebx e.1)(ecx e.2)(Zflag 1);

((reg eax)(reg ebx))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.2)(ecx e.3)(Zflag 0);

((reg eax)(const e.1))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.2)(ecx e.3)(Zflag 1);

((reg eax)(const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.2)(ebx e.3)(ecx e.4)(Zflag 0);

}

7


