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Abstract

We present a novel classification of computer viruses using a for-

malised notion of reproductive models based on Gibson’s theory of

affordances. A computer virus reproduction model consists of: a la-

belled transition system to represent the states and actions involved

in that virus’s reproduction; a notion of entities that are active in the

reproductive process, and are present in certain states; a sequence of

actions corresponding to the means of reproduction of the virus; and

a formalisation of the actions afforded by entities to other entities. In-

formally, an affordance is an action that one entity allows another to

perform. For example, an operating system might afford a computer

virus the ability to read data from the disk. We show how computer

virus reproduction models can be classified according to whether or

not any of their reproductive actions are afforded by other entities.

We give examples of reproduction models for three different computer

viruses, and show how reproduction model classification can be auto-

mated. To demonstrate this we give three examples of how computer

viruses can be classified automatically using static and dynamic anal-

ysis, and show how classifications can be tailored for different types

of anti-virus behaviour monitoring software. Finally, we compare our

approach with related work, and give directions for future research.
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1 Introduction

We present a new approach to the classification of reproducing malware based
on Gibson’s theory of affordances [14, 15]. This approach arose from work
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on the related problem of reproduction model classification [38, 35], in which
reproduction models can be classified as either unassisted or assisted, or in
a multi-dimensional space based on predicates representing abstract actions,
which capture whether or not parts of reproductive behaviour are afforded
to the reproducer by another entity, or not.

The approach presented here differs from other models and classifications
of computer viruses in that it is constructed upon a formalised abstract
ontology of reproduction based on Gibson’s theory of affordances. Using our
ontology we can classify computer viruses at different abstraction levels, from
behavioural abstractions in the vein of Filiol et al [12], to low-level assembly
code semantical descriptions in the vein of our earlier work on metamorphic
computer virus detection [36]. We are able to distinguish formally between
viruses that require the help of external agency and those that do not.

Computer viruses are detected in a variety of ways based on static and
dynamic analysis. Behaviour monitoring is a form of dynamic analysis, which
involves observing the behaviour of programs to find suspicious behaviours
previously recorded. If a suspicious behaviour is observed, then the behaviour
monitor can flag that program or process for further action or investigation.
The capabilities of different behaviour monitors will vary, and therefore it
is possible that a virus might be detectable using one behaviour monitor,
but not another. In fact, a recent study by Filiol et al has shown this to
be the case [12]. Suppose that an anti-virus software system has behaviour
monitoring detection capabilities, as well as non-behaviour monitoring based
detection capabilities, such as signature search. If system resources are lim-
ited, and a full search for viruses using a non-behaviour monitoring method is
therefore not practical, then it is logical for anti-virus software to try to pri-
oritise the detection (by non-behavioural monitoring means) of those viruses
that are invisible to behaviour monitoring software. This may be of partic-
ular use on systems where resources are limited, such as mobile computing
systems.

We will show how the method of classifying viruses as invisible or vis-
ible to behaviour monitoring software can be equivalent to classification of
formal computer virus reproduction models as unassisted or assisted, and
how this could be automated. Classification, as we will show, is also possi-
ble “by hand”, but automation is advantageous given the frequency of mal-
ware occurrence and the laboriousness of manual classification. It is possible
that similar approaches are already used as standard practice to improve
the efficiency of anti-virus software, but we demonstrate that affordance-
based reproduction models are able to give a theoretical explanation of this
methodology.

The paper is organised as follows. First, we finish this section with an
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overview of existing computer virus classification methods. Then, in Sec-
tion 2 we present our formal computer virus reproduction models, and de-
scribe formally the difference between unassisted and assisted classifications
of reproduction models. We give several examples formal computer virus
reproduction models of real-life computer viruses, and construct these based
on low and high levels of abstraction. We then show how decisions made in
the formal model can result in different classifications of the same computer
virus.

We show how this flexibility of classification can be exploited in Sec-
tion 3, where it is used to tailor automatic computer virus classifications to
the capabilities of different anti-virus behaviour monitoring software. We
also discuss a potential application to computer virus detection: the devel-
opment of an automatic classification system that separates viruses that are
detectable at run-time by behaviour monitoring from those that are not.
We show how ad hoc reproduction models can be generated and classified
automatically using static and dynamic analysis. By defining the notion of
external agency (on which we base the automatically-generated reproduction
models) in accordance with the capabilities of different anti-virus behaviour
monitoring software, the classifications of computer viruses are tailored to
suit different anti-virus behaviour monitors. We demonstrate this with the
formal executable language Maude, which we use to give a specification of an
automatic computer virus classification system based on dynamic analysis.
We specify the various capabilities of behaviour monitoring software using
Maude, and show that they result in different classifications of the same
computer virus. We show how it is possible to develop metrics for comparing
those viruses that depend on external entities, so that viruses that rely on
external entities can be assessed for their potential difficulty of detection at
run-time by behaviour monitoring.

Finally, in Section 4 we compare our affordance-based reproduction mod-
els with other approaches to computer virus classification in the literature,
and give directions for future research.

1.1 Related Work

The original problem of classification in computer virology lay in distin-
guishing computer viruses from non-reproducing programs [7], and to this
end much of the literature in the area is concerned with this problem, which
is essential to the functionality of anti-virus software. However, further sub-
classifications of the class of computer viruses have been given in the litera-
ture. Adleman [1] divides the computer virus space into four disjoint subsets
of computer viruses (benign, Epeian, disseminating and malicious). Spaf-
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ford [30] gives five different generations of computer viruses which increase
in complexity, from “Simple” to “Polymorphic”. Weaver et al [34] have
given a taxonomy of computer worms based on several criteria including tar-
get discovery and worm carrier mechanisms. Goldberg et al [17], Carrera
& Erdélyi [5], Karim et al [20, 21] and Wehner [39] present classifications
of malware based on phylogenetic trees, in which the lineage of computer
viruses can be traced and a “family tree” of viruses constructed based on
similar behaviours. Bonfante et al [3, 4] give a classification of computer
viruses based on recursion theorems. Gheorghescu [13] gives a method of
classification based on reuse of code blocks across related malware strains.
A classification given by Bailey et al [2] is based on the clustering of mal-
ware that share similar abstract behaviours. In addition, both Filiol [11] and
Ször [31] give comprehensive overviews of the state of the art of malware,
including classification methods.

Most antivirus software vendors have their own schemes for malware nam-
ing, which involve some implicit classification, e.g., names like “W32.Wargbot”
or “W97M/TrojanDropper.Lafool.NAA” give some information about the
platform (e.g., Microsoft Windows 32–bit) and/or the primary reproductive
mode of the virus (e.g., “trojan dropper”). Recently there have been efforts
to standardise the many and varied malware naming schemes, e.g., the Com-
mon Malware Enumeration (CME) project [24] and the Computer Antivirus
Research Organization (CARO) virus naming convention [28]. CME is still
at an early stage, and the current status of CARO is unclear. However, it
is clear that we are far from uniformity with respect to malware naming
schemes, as is revealed in recent surveys [18, 13].

2 Computer Virus Classification

2.1 Formal Models of Computer Virus Reproduction

Our formal models of computer virus reproduction are related to our earlier
work on the classification of reproduction models [38, 35]. Our classification
of reproducers is based on the ontological framework given by Gibson’s the-
ory of affordances. Originally Gibson proposed affordances as an ecological
theory of perception: animals perceive objects in their environment, to which
their instincts or experience attach a certain significance based on what that
object can afford (i.e., do for) the animal [14, 15]. For example, for a small
mammal, a cave affords shelter, a tree affords a better view of the surround-
ings, and food affords sustenance. These relationships between the animal
and its environment are called affordances. Affordance theory is a theory of
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perception, and therefore we use the affordance idea as a metaphor: we do
not suggest that a computer virus perceives its environment in any significant
way, but we could say metaphorically that a file affords an infection site for
a computer virus, for example.

For the purposes of our reproduction models, an affordance is a relation
between entities in a reproduction system. In the case of a particular com-
puter virus, it is natural to specify the virus as an entity, with the other
entities composed of those parts of the virus’s environment which may as-
sist the virus in some way. Therefore, we could include as entities such
things as operating system application programming interfaces (APIs), disk
input/output routines, networking APIs or protocols, services on the same
or other computers, anti-virus software, or even the user. We are able to
include such diverse entities in our models since we do not impose a fixed
level of abstraction; the aim is to be able to give a framework that specifies
the reproductive behaviour of computer viruses in a minimal way, so that
classifications can be made to suit the particular circumstances we face; we
may wish to tailor our classification so that viruses are divided into classes
of varying degrees of difficulty of detection, for example.

We assume that any model of a reproductive process identifies the states
of affairs within which the process plays itself out. For computer viruses,
these states of affairs may be very clearly and precisely defined: e.g., the
states of a computer that contains a virus, including the files stored on disk,
the contents of working memory, and so forth. Alternatively, we can use ab-
stract state transitions corresponding to abstract behaviours of the computer
virus. We will demonstrate how these models can be constructed, and how
they are used in computer virus classification. Reproduction models are usu-
ally based on a sense of how the computer virus operates and interacts with
its environment; different points of view can result in different reproduction
models of the same virus. These reproduction models are shown to be useful
to classify viruses according to different criteria, and based on whether they
use external entities in their reproductive processes, and to what degree.

Two key elements of the states of a model are the entities that partake in
the various states, and the actions that allow one state to evolve into another
state. For a computer virus, these states could be abstract, or represent the
states of the processor or virtual machine which executes the virus. The
entities would be the parts of the computer system that enable the virus
to reproduce, e.g., operating system APIs. In general, we assume that a
model identifies the key entities or agents that take part in the process being
modelled, and has some way of identifying whether a particular entity occurs
in a particular state of affairs (e.g., a network service may only be available at
certain times). We also assume that a model identifies those actions that are
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relevant to the computer virus being modelled, and describes which actions
may occur to allow one state of affairs to be succeeded by another. Therefore,
we will use a labelled transition system to model the dynamic behaviour of
a virus.

This basic framework allows us to talk about reproductive processes: we
can say that reproduction means that there is some entity v (a computer
virus, say), some state s (the initial state of the reproductive process) with
v present in state s (denoted “v ε s” — see Definition 1 below) and some
path p = a1, . . . , an of actions, such that p leads, through a succession of
intermediate states, to a state s′ with v ε s′. This, of course, allows for
both abstract reproductive systems where we have identified abstract actions
which correspond to the virus’s behaviour, as well as low-level modelling at
the assembly code or high-level language statement level. We assume that the
relation v ε s can be made abstract enough to accommodate an appropriate
laxity in the notion of entity: i.e., we should gloss v ε s as stating that the
entity v, or a copy of v, or even a possible mutation of v by polymorphic
or metamorphic means, is present in the state s. In computer virology, such
an abstraction was explicit in the pioneering work of Cohen [7], where a
virus was identified with the “viral set” of forms that the virus could take.
This approach is useful for polymorphic or metamorphic viruses that, in an
attempt to avoid detection, may mutate their source code.

So far we have given an informal discussion of affordances, as well as a
justification for using labelled transition systems to model the reproductive
behaviour of computer viruses. We will now define affordances formally as
the set of actions that one entity affords another. We write Aff (e, e′) for the
actions that entity e affords to entity e′. The idea is that these are actions
that are available to e′ only in states where e is present. Thus, we require that
a model carves up these actions in a coherent way: formally, a ∈ Aff (e, e′)
implies that for any state s where e′ is present, if the action a is possible (i.e.,
a leads to at least one state that succeeds s) then the entity e is also present
in the state s.

This discussion is summarised in

Definition 1 An affordance-based computer virus reproduction model is a
tuple

(S,A, 7−→,Ent , r, ε, p,Aff )

where

• (S,A, 7−→) is a labelled transition system, in which S is a set of states,
A is a set of actions, and 7−→ ⊆ S ×A× S is a relation giving labelled
state transitions, e.g., s1

a17−→ s2 means that state s1 proceeds to state s2

by action a1;
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• Ent is a set of ‘entities’ with v ∈ Ent the particular computer virus
that reproduces in the model;

• ε ⊆ Ent × S is a binary relation, with e ε s indicating that entity e is
present in the state s;

• p is a path through the transition system representing the reproduc-
tion of v, i.e., p consists of a sequence s1

a17−→ s2

a27−→ . . .
an−1

7−→ sn with
si

ai7−→ si+1 for 1 ≤ i < n, and with r ε s1 and r ε sn.

• Aff : Ent×Ent → P(A) such that, for any entities e and e′, if a ∈
Aff (e, e′), then for all states s with e′ ε s, if a is possible in s (i.e.,
s

a
7−→ s′ for some state s′), then e ε s.

As a result of this definition there are some interesting questions that arise.
First, we know that polymorphic and metamorphic computer viruses can
vary syntactically, so which of these variants is the one specified in this
reproduction model? Second, if a polymorphic or metamorphic virus is able
to alter its syntax, then how do we define the path of the virus’s reproduction
model?

The first question is actually a specific case of the general problem of
reproducer classification. In evolutionary systems, there is variation both in
the genome and the phenome, so this question is equivalent to “which of all
the possible xs of species y are we specifying in the model?” In other words,
the reproducers specified in our reproduction models are abstract. In biology
we are able to identify dissimilar entities as being of the same species by their
behaviour, or physiology, for example. In a similar way, we can identify the
various allomorphs of a metamorphic computer virus through definition of
a viral set that enumerates the possible generations, or even by using an
abstract description of the virus’s behaviour.

The second question is related to the first. The generations of a given
polymorphic or metamorphic virus are not semantically equivalent, but must
remain behaviourally equivalent. Therefore, we can define a typical execution
run as any sequence of instructions that leads to the behaviour we expect of
the virus. Since all generations of the virus will share this behaviour, we can
use a description of this behaviour to define the reproductive path. Another
way might to be to abstract from the particular instructions used by the
metamorphic computer computer virus, and use these abstract actions to
construct the path.

We shall see below how these formal models of computer virus reproduc-
tion can be used to classify computer viruses and other forms of reproducing
malware.
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2.2 Classifying Computer Viruses

The key distinction in our classification is the ability to distinguish between
computer viruses which require the help of external entities, and those that do
not. We call the former unassisted computer viruses, and the latter assisted
computer viruses.

As we shall see, it is not the computer viruses themselves that are classi-
fied as unassisted or assisted, but their reproduction models. In fact, it is pos-
sible to create affordance-based reproduction models of the same computer
virus that are classified differently. In Section 3, we use this flexibility to tai-
lor our reproduction models to the particular abilities of different anti-virus
behaviour monitors, and classify as assisted only those viruses detectable by
the behaviour monitor.

In addition, our reproduction models do not enforce a particular level
of abstraction. For example, we could create a reproduction model of a
computer virus in which the states are the states of the processor executing
the virus, and the actions are the assembly language instructions which the
processor executes. Alternatively, we could view the virus as an abstract
entity with a certain number of abstract behaviours, e.g., “opening a file” or
“copying data”. As we shall see later in this section, the ability to model
viruses at different levels of abstraction is advantageous, because it can make
the modelling and classification process much simpler.

For example, the reproduction models of the Unix shell script virus and
the Archangel virus presented in Sections 2.3 and 2.4 are of a low abstraction
level, in that there is one action in the path for every statement of the virus’s
code. However, for the sake of simplicity in Section 2.5 we will present a
more abstract model of computer virus behaviour, in which the individual
statements which compose the Strangebrew virus are abstracted to gener-
alised actions that correspond to abstract reproductive behaviour such as
“open host file” or “search for a file to infect”. These abstract models are
efficient means of classification “by hand”, as computer viruses often contain
thousands of lines of code. However, in Section 3 we will show how classifi-
cation using “concrete” models (i.e., one action per instruction/statement)
can be achieved by automated, algorithmic means.

Regardless of the level of abstraction of a reproduction model, the over-
all distinction between unassisted and assisted computer virus reproduction
models remains the same, which we present as follows.

Definition 2 A computer virus reproduction model can be classified as unas-
sisted iff for all actions a in the reproducer’s path p, there is no entity e such
that e 6= r and a ∈ Aff (e, r). Conversely, a computer virus reproduction
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5

6

7

8

...

echo st=$sq${st}$sq > .1;

echo dq=$sq${dq}$sq >> .1;

echo sq=$dq${sq}$dq >> .1;

echo $st >> .1;

chmod +x .1

Figure 1: Statements from the Unix shell script virus showing use of echo

and chmod.

model can be classified as assisted iff there is some action a in the path p

such that a ∈ Aff (e, r) for e 6= r.

Since affordances are actions in the labelled transition system that are not
possible without the presence of some entity, we say that if there are any
actions in the computer virus’s reproduction path (which could be abstract
actions such as “open file” or less abstract examples like a specific instruc-
tion “mov eax, ebx”) that are afforded by entities other than the virus itself,
then the virus’s reproduction is assisted in some way, and therefore the re-
production model is classified as assisted. In the converse scenario, where
there are no actions in the reproduction path of the computer virus that
are afforded by entities other than the virus, then the virus’s reproduction
is not assisted in any way, and therefore the resulting classification of the
reproduction model is unassisted.

2.3 Modelling a Unix Shell Script Virus

The virus given in Figure 1 is a Unix shell script virus which runs when
interpreted using the Bourne-again shell (Bash). The first three statements
of the virus define three variables that contain an encrypted version of the
program code and aliases for single and double quotation marks. The next
three statements of the program code output these data into a new file called
.1. The seventh statement of the program appends the program code to .1,
and the final statement of the program changes the file permissions of .1 so
that it is executable. At this point the reproductive process is complete.

We consider a typical execution run of the Bash virus, i.e., we neglect any
anomalies which might prevent the reproductive process from completing,
such as the hard disk crashing or the user terminating an essential process.
We define a model of the Bash virus’s reproduction MB as follows.

We base the labelled transition system on the statements of the Bash
virus, so that each statement corresponds to an action in the path. There-
fore, we define nine states, S = {s1, s2, . . . , s9} and eight actions A =
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{a1, a2, . . . , a8}, where statement i of the virus code (see Figure 1) corre-
sponds to the transition si

ai7−→ si+1. Therefore each statement in the shell
script virus is an action, and the states therefore correspond to the states of
the shell which runs the script. The reproductive path is therefore

s1

a17−→ s2

a27−→ . . .
a87−→ s9

from starting state s1 to final state s9.
Next we must consider which entities are present in the reproduction

model. The virus uses the echo and chmod commands, which are actually
programs within the Unix file system, and are called by the shell when the
virus executes. Therefore, we can model echo and chmod as entities, and
since the Bash virus reproduces, we know that the set of entities Ent =
{v, echo, chmod}, where v is the Bash virus.

The computer virus could not execute without echo and chmod, and we
can model this using affordances, i.e., echo and chmod afford certain actions
to the virus. These actions are the actions in which the echo and chmod

commands are used. For example, we can say that the actions a4, a5, a6 and a7

are afforded by the echo entity to the virus because these actions correspond
to statements in which the command echo appears. Similarly, a8 is afforded
by the chmod entity to the virus, because a8 is the action corresponding to
the eighth statement, which contains the chmod command. Formally, we
say that a4, a5, a6, a7 ∈ Aff (echo, vB) and a8 ∈ Aff (chmod, vB). Since we
know that these actions are afforded by other entities to the reproducer,
logically, these entities must be present in the states preceding these actions,
in line with condition 4 of Definition 1. Therefore, echo ε s3, echo ε s4,
echo ε s5, echo ε s6 and chmod ε s7. In addition, we know that the Bash
virus reproduces, and therefore must be present in the start and end states
of the reproduction path, i.e., v ε s1 and v ε s9.

Classification as unassisted or assisted depends upon whether there are
any entities other than the reproducer which afford actions in the repro-
duction path. Actions a4, a5, a6, a7 and a8 are actions in the path that are
afforded to the virus by entities other than the viruses, and therefore by
Definition 2 reproduction model MB is classified as assisted.

This is just one way to model the reproduction of the Bash virus, however.
For example, we could consider no entity other than the reproducer itself.
Let us call this reproduction model M ′

B
. We will denote the component of

the respective models by using the same subscript, so that SMB
refers to the

set of states of reproduction model MB, and SM ′

B
refers to the set of states

of model M ′

B
. Let the labelled transition system of M ′

B
be the same as MB,

i.e., SM ′

B
= SMB

, AM ′

B
= AMB

and 7−→M ′

B
= 7−→MB

, and let the reproducer
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be the Bash virus, as before, i.e., rM ′

B
= rMB

= v. Let the Bash virus’s
reproduction path and start/end states be as before, and so pM ′

B
= pMB

and
ss

M′

B

= ssMB
and se

M′

B

= seMB
. Our model M ′

B
differs from MB in that we

assume that chmod and echo are given. So, the only entity present is the
virus itself, and therefore EntM ′

B
= {v}. Here, affordances are not needed,

and so AffM ′

B
(e, e′) = ∅ for all e, e′ ∈ EntM ′

B
. Again, we know that the Bash

virus reproduces and therefore is present in the start and end states of the
reproduction path, so v εM ′

B
s1 and v εM ′

B
s9. Since there are no actions in

the path that are afforded to the virus by another entity, we know that by
Definition 2, M ′

B
is classifed as an unassisted reproduction model.

2.4 Modelling Virus.VBS.Archangel

Archangel (see Figure 2) is a Visual Basic Script virus written for the Mi-
crosoft Windows platform. Archangel starts by displaying a message box,
and declaring some variables. In line 5 the virus obtains a handle to the
file system in the form of an object fso of the FileSystemObject class. A
new folder is created, and then Archangel uses the CopyFile method of the
fso object to create a copy of itself called fun.vbs. This method call uses a
variable from the WScript class called ScriptName, which contains the name
of the Visual Basic Script file containing the Archangel virus. The Archangel
virus uses this method to reproduce a further five times. In addition to its
reproduction behaviour, Archangel executes its payload and attempts to run
one of its offspring via an Windows system script called autoexec.bat.

We define a computer virus reproduction model for the Archangel virus
called MA. The labelled transition system is constructed in a similar way to
the Bash virus in the previous section, with one action corresponding to one
statement. However, the flow of control is more complex, as Archangel uses
two conditional if–then statements to execute lines 6 and 12 conditionally.
As a result, the labelled transition system branches at each of these points
(see Figure 3). One possible reproduction path corresponds to the case where
the guards of the two conditional statements are true, and we specify this
path in our reproduction model:

pMA
= s1

a17−→ s2

a27−→ . . .
a327−→ s33

There are two different objects which enable the Archangel virus at diffferent
points in its reproduction: fso and WScript. We could define these as two
different entities which afford the virus certain actions. Alternatively, we
could consolidate them into one entity representing the Windows Script Host
which provides library classes to Visual Basic scripts. The Archangel virus
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6

7

8

11

12

13

14

15

16

17

18

19

20

21

...

If Not fso.FolderExists(newfolderpath) Then

Set newfolder = fso.CreateFolder(newfolderpath)

End If

fso.Copy Wscript.ScriptName, "C;\WINDOWS\SYSTEM\fun.vbs", True

fso.Move "C:\WINDOWS\SYSTEM\*.*","C;\WINDOWS\MyFolder\"

...

set fso=CreateObject("Scripting.FileSystemObject")

If Not fso.FolderExists(newfolderpath) Then

Set newfolder = fso.CreateFolder(newfolderpath)

End If

fso.Copy Wscript.ScriptName, "C;\MyFolder", True

fso.Copy Wscript.ScriptName, "C;\WINDOWS\SYSTEM\fun.vbs", True

fso.Move "C;\WINDOWS\SYSTEM32","C:\WINDOWS\SYSTEM"

fso.Copy Wscript.ScriptName, "C;\WINDOWS\SYSTEM\SYSTEM32\

fun.vbs", True

fso.Copy Wscript.ScriptName, "C;\WINDOWS\StartMenu\Programs\

StartUp\fun.vbs", True

fso.Delete "C:\WINDOWS\COMMAND\EBD\AUTOEXEC",True

fso.Delete "C:\WINDOWS\Desktop\*.*"

fso.Copy Wscript.ScriptName, "C:\\fun.vbs", True

set shell=wscript.createobject("wscript.shell")

...

Figure 2: Statements from Virus.VBS.Archangel showing the use of fso and
WScript.
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is also an entity which must appear in the model, and therefore we define
EntMA

= {vA, wsh}, where vA is the Archangel virus and wsh is the Windows
Script Host, of which vA is the reproducer in this model. Since the Windows
Script Host allows the virus to create an instance of the FileSystemObject

class, as well as access the WScript.ScriptName variable, we know that the
statements in which these object references appear are actions that must be
afforded by the Windows Script Host to the Archangel virus. The object
fso of class FileSystemObject appears in statements 6, 7, 8 and 11–20;
WScript appears in statements 7, 13, 14, 16, 17, 20 and 21. The actions
that correspond to these statements are those actions with those numbers as
subscripts and therefore ai ∈ AffMA

(wsh, vA) for 6 ≤ i ≤ 8 and 11 ≤ i ≤ 21.
By Definition 1 we know that the Windows Script Host must be present in
every state preceding these actions, and so wsh εMA

s for each state s in which
one of these actions is possible (i.e., s6, s7, s8 and so on — for the complete
list please consult Figure 3). Finally, we know that the virus must be present
in the start and end states in the path, and so vA εMA

s1 and vA εMA
s33.

By Definition 2, this model is classified as an assisted model because there
are actions in the path that are afforded by Windows Script Host, an entity
other than the virus.

There are many alternative models of Archangel that are possible. We
define one of these models, M ′

A
, in order to demonstrate an alternative classi-

fication as unassisted. We will use the same labelled transition system, repro-
ducer and reproductive path in M ′

A
, and therefore SMA

= SM ′

A
, AMA

= AM ′

A
,

7−→MA
= 7−→M ′

A
, rMA

= rM ′

A
= vA and pMA

= pM ′

A
. However, the Windows

Script Host is not considered to be a separate entity in this model. There-
fore the set of entities consists of only one entity, the virus itself, and so
EntM ′

A
= {vA}. There is no need to model affordances, as only the virus

is present, and so AffM ′

A
(e, e′) = ∅ for all e, e′ ∈ EntM ′

A
. Since there are

no affordances in this model, the ε relation is defined only to indicate the
presence of the reproducer in the start and end states of the path, and so
vA εM ′

A
s1 and vA εM ′

A
s33. There are no actions in the path that are afforded

by entities other than the computer virus, and therefore by Definition 2, the
computer virus reproduction model M ′

A
is classified as unassisted.

2.5 Modelling Virus.Java.Strangebrew

Strangebrew was the first known Java virus, and is able to reproduce by
adding its compiled Java bytecode to other Java class files it finds on the host
computer. After using a Java decompiler to convert the compiled bytecode to
Java, we analysed Strangebrew’s reproductive behaviour. Space limitations
do not allow us to include the full output of the decompiler (which is over
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Figure 3: Labelled transition system for Virus.VBS.Archangel. The repro-
ductive path is indicated by a dashed line.

500 lines); however, we present an overview of Strangebrew’s reproductive
behaviour for the purposes of classification.

Strangebrew searches for Java class files in its home directory, which it
analyses iteratively until it finds the class file containing the virus. Then,
it opens this file for reading using an instance of the Java Application Pro-
gramming Interface (API) class, RandomAccessFile:

for(int k = 0; as != null && k < as.length; k++)

{

File file1 = new File(file, as[k]);

if(!file1.isFile() || !file1.canRead() ||

!as[k].endsWith(".class") ||

file1.length() % 101L != 0L)

continue; // go to next iteration of loop

randomaccessfile = new RandomAccessFile(file1, "r");

...

}

Once this file is opened Strangebrew parses the contents of the file, updating
the file access pointer repeatedly until it reaches its own bytecode, which it
reads in two sections:

byte abyte0[] = new byte[2860];

byte abyte1[] = new byte[1030];

...

randomaccessfile.read(abyte0);

...

randomaccessfile.read(abyte1);

...

randomaccessfile.close();
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Next the virus closes its host file, and enters a similar second loop, this time
searching for any Java class file that is not infected by the Strangebrew virus
(i.e., it is looking for potential hosts):

for(int l = 0; as != null && l < as.length; l++)

{

File file2 = new File(file, as[l]);

if(!file2.isFile() || !file2.canRead() || !file2.canWrite()

|| !as[l].endsWith(".class") || file2.length()%101L == 0L)

continue; // go to next iteration of loop

randomaccessfile1 = new RandomAccessFile(file2, "rw");

...

}

When Strangebrew finds a target for infection, it opens the file for reading
and writing:

randomaccessfile1 = new RandomAccessFile(file2, "rw");

Strangebrew then finds the insertion points for the viral bytecode read in
previously, using a sequence of seek() method calls, e.g.:

...

randomaccessfile1.seek(j1);

int i5 = randomaccessfile1.readUnsignedShort();

j1 += 4;

randomaccessfile1.seek(j1);

int j = randomaccessfile1.readUnsignedShort();

j1 = j1 + 2 * j + 2;

randomaccessfile1.seek(j1);

...

Finally, Strangebrew writes its viral bytecode to the insertion points within
the file to be infected before closing it:

randomaccessfile1.write(abyte0);

...

randomaccessfile1.write(abyte1);

...

randomaccessfile1.close();
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The reproduction of the Strangebrew virus is then complete.
The reproduction models of the computer viruses presented earlier used

labelled transition systems at a low level of abstraction: each action corre-
sponded to one statement of the computer virus. If we are to define a formal
reproduction model for Strangebrew, then this would take considerable time,
as there are over 500 lines of code including loops and conditional statement
execution, and therefore the labelled transition system would be very com-
plex. For this reason, we may wish to use abstract actions corresponding to
abstract behaviours of the virus: the action of writing to a file, for example.
Similar approaches have proven useful in computer virology, particularly in
the recent work by Filiol et al on behaviour-based detection strategies [12].
The use of abstract actions does not compromise the accuracy of classifica-
tion as unassisted or assisted; if we determine that a particular entity affords
a particular low-level action (e.g., the use of a certain API function within a
statement), and that low-level action is part of the execution of the abstract
action (e.g., to open a file for reading), then we know that the same entity
must afford the abstract action to the virus, as the action could not execute
without the assistance of the affording entity.

Using this assumption we will define a reproduction model MS for the
Strangebrew virus, which uses an abstract description of behaviour in the
form of a labelled transition system. Let the following abstract actions, based
on the description of the behaviour of the virus presented above, represent
the behaviour of the Strangebrew virus:

a1 = Search for host file containing the virus.
a2 = Open host file.
a3 = Find viral code in host file.
a4 = Read in viral code.
a5 = Close host file.
a6 = Search for a file to infect.
a7 = Open file to infect.
a8 = Find insertion point.
a9 = Write viral code to file.
a10 = Close infected file.

No other actions are required to model the reproductive behaviour of the
virus, and therefore we define the set of actions AMS

= {a1, a2, . . . , a10}. The
actions take place in the following sequence from the initial state s1 to the
final state s11:

s1

a17−→ s2

a27−→ . . .
a107−→ s11
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This sequence of actions and states is the reproductive path of the Strange-
brew virus. There are no other states, actions or transitions required to
model the virus’s behaviour, and therefore this is also a definition of the
labelled transition system of MS.

As mentioned earlier, the virus uses an object of the RandomAccessFile

class from the Java API, and therefore we can define this class as an entity.
The virus itself is an entity, and therefore EntMS

= {vS, raf}, where vS is
the Strangebrew virus, and raf is the RandomAccessFile class. This class
is used twice in the reproduction of the Strangebrew virus; once for each of
the two files that are opened. We can view the instantiation of this class as
the acquisition by the virus of a handle to a particular file system. In effect,
this opens a file for input and output, because once this handle is obtained,
the virus can use RandomAccessFile class instance methods to read() from
and write() to the file, as well as seek() viral code and insertion points
before it close()s the file.

Therefore, the act of opening a file is afforded by the RandomAccessFile

entity to the virus. This act is performed twice in abstract actions a2 and
a7, and therefore a2, a7 ∈ AffMS

(raf, vS). By Definition 1, we know that any
entity which affords an action must be present in all states that precede that
action, and therefore raf εMS

s2 and raf εMS
s7. We also know that the

virus, as the reproducer in the model, must be present in the initial and final
states, and so vS εMS

s1 and vS εMS
s10.

By Definition 2, the reproduction model MS is classified as assisted if and
only if there is an action in the virus’s path which is afforded by an entity
other than the virus. Both a2 and a7 fulfill these criteria, and therefore MS

is a classified as an assisted reproduction model.
There are many different ways of specifying a reproduction model for the

Strangebrew virus. One of these reproduction models, M ′

S
, can be defined as

follows. The labelled transition system, reproducer and path are the same as
in MS, so that SMS

= SM ′

S
, AMS

= AM ′

S
, 7−→MS

= 7−→M ′

S
, rMS

= rM ′

S
= vS

and pMS
=M ′

S
. However, there is only one entity, vS, and no affordances,

so that AffM ′

S
(e, e′) = ∅ for all e, e′ ∈ EntM ′

S
. Since the only entity is the

reproducer, we need only state the minimal assumption from Definition 1 that
the reproducer is present in the initial and final states of the reproduction
path, i.e., vS εM ′

S
s1 and vS εM ′

S
s10. The model M ′

S
therefore has a different

classification, because it is an unassisted reproduction model, as there are no
entities different from the reproducer that afford any action in the path to
the reproducer.
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3 Automatic Classification

It has been shown in the previous section that it is possible to define formal
computer virus reproduction models, and classify them according to their
degree of reliance on external agency. The question arises: is it possible to
automate this process so that classification could be done without so much
human toil? It seems that process of defining a formal reproduction model —
determining the labelled transition system, which entities are present, etc. —
is not easily automatable, since these are qualities that human beings assign
to computer viruses in such a way that makes sense to them. These kinds
of formal reproduction models are therefore ontological; they let us view
and classify computer viruses in a way that distinguishes common features
and arrange like with like. However, the classification of computer virus
reproduction models, which relies on determining whether a computer virus
is reliant on external agency, shows greater promise for automation. One
can imagine a situation where an assembly code virus can be analysed and
classified according to whether it requires the aid of another entity or not,
once we have defined what that entity is, and what that aid might be. For
instance, if we choose the operating system to be an entity, then we can
assume that any assembly language statement which uses a feature of the
operating system API must be afforded by the operating system. Therefore
we would know that the resulting reproduction model of the virus must be
assisted, because the reproductive path of the virus (i.e., the sequence of
statements executed by the virus) requires the help of another entity (the
operating system). Therefore, it is not necessary to define every part of a
reproduction model in order to determine whether it can be classified as
unassisted or assisted.

We base automatic classification on a number of assumptions, which de-
pend on whether we are using static or dynamic analysis. The method that
we use for static analysis in Sections 3.2 and 3.3 is as follows:

• We have some virus code, a list of entities, and for each entity we have
a list of “components” within the code that are afforded by that entity.
We assume that every line of the code is executed, and therefore each
line is part of the reproduction path of some ad hoc model. Therefore,
any occurrence of any of the components within the virus code indicates
that there is an action in the path which is afforded by another entity to
the virus, and therefore the ad hoc computer virus reproduction model
is classified as assisted. Otherwise, if there are no such components
present, then we classify the ad hoc model as unassisted.

The method that we use for dynamic analysis in Section 3.4 is similar:
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• We have a black box program which we know contains a virus. We
assume that a behaviour monitor can detect when the black box has
started its execution, and when that execution has terminated. The
behaviour monitor is also capable of detecting certain “events”, for
example, when the virus opens a file. We assume that when the virus is
executing, it executes the reproductive path of some ad hoc computer
virus reproduction model. We assume that events witnessed by the
behaviour monitor are actions that are afforded by some entity other
than the virus, to the virus. If the behaviour monitor is able to detect
any events, then we know that there is some entity other than the virus
which has afforded some action in the reproduction path to the virus,
and therefore the ad hoc computer virus reproduction model is classified
as assisted. If the virus finishes execution before the behaviour monitor
can detect any events, then the virus has not been afforded any actions
by another entity, and therefore it is classified as unassisted.

Using the methods described above, we can classify computer virus repro-
duction models as unassisted or assisted using static or dynamic analysis.
However, there are some limitations.

One example in which static analysis is limited is in the case of computer
viruses that employ code obfuscation techniques, e.g., a polymorphic virus
may use the operating system API by decoding these statements at run-time,
so that they would not appear in the source code of the virus. Therefore,
static analysis for automated classification is just as limited other methods
that use static analysis, e.g., heuristic analysis. In contrast, classification
by dynamic analysis takes place empirically. The virus would be executed
a number of times, in order to determine whether it makes any calls to
an external entity. The advantage of dynamic over static analysis is that
polymorphic viruses would not be able to employ code obfuscation to hide
their reliance on external agency. However, the obvious disadvantage is that
the virus may conceal its behaviour in other ways, such as only reproducing
at certain times so that we may observe the virus to be unreliant upon other
entities only because it has not reproduced. Therefore we would need to be
sure that the virus has reproduced, which in general is not algorithmically
decidable [7], and even for a particular known virus, can be a difficult problem
in itself.

The limitations of classification by static and dynamic analysis outlined
here are similar to the limitations of static and dynamic analysis for other
means of computer virus detection and analysis, which have been discussed
in detail elsewhere in the literature (e.g., ch. 5, [11]). Overall, classification
by automated means is possible but limited, as are most other forms of
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classification for virus detection.

3.1 Behaviour Monitoring and Classification

In Section 2 we showed how computer viruses can be classified differently
according to how we define the virus’s reproduction model, e.g., defining
the operating system as an external entity might take a virus from an unas-
sisted classification to an assisted classification. We can take advantage of
this flexibility of classification to tailor the classification procedure towards
increasing the efficiency of anti-virus software. The increasing risk of repro-
ducing malware on systems where resources are highly limited, e.g., mobile
systems such as phones, PDAs, smartphones, etc., is well documented (see,
e.g., [27, 33, 40, 26]). However, the limited nature of the resources on these
systems is likely to increase the difficulty of effective anti-virus scanning. In
any case, it is preferable to the manufacturers, developers and users of all
computing systems to use only the most efficient anti-virus software.

It is possible to adjust classification of viruses according to the behaviour
monitoring abilities of anti-virus software, and in doing so create a tailored
classification that will allow increased efficiency of anti-virus software. For ex-
ample, if the anti-virus can detect network API calls but not disk read/write
calls, then it is logical to classify the network as an external entity, but not
the disk controller. Therefore, the reproducing malware models classified as
unassisted will be those that do not use the network or any other external
entity. The viruses whose reproduction models are assisted will be those
that do use external entities, and therefore can be detected at run-time by
behaviour monitoring. In other words, we can classify viruses according to
whether or not they are detectable at run-time by behaviour monitoring us-
ing affordance-based classification, using techniques based on either static or
dynamic analysis. In principle, We could also use these methods to compare
behaviour monitoring software by the sets of the viruses that have an unas-
sisted classification. For example, one form of behaviour monitoring might
result in 1000 viruses being classified as unassisted, i.e., the software is un-
able to monitor the behaviour of those 1000 viruses. However, another form
of behaviour monitoring employed by a different anti-virus software might
result in only 500 viruses being classified as unassisted.

Therefore, we can see that capabilities of particular behaviour monitor-
ing software impose a particular set of classifications for models of computer
viruses, because entities are defined as those things beyond the virus, but
whose communications with the virus (via an API, for example) can be inter-
cepted by the anti-virus behaviour monitoring software. The logical conclu-
sion here is that on systems without anti-virus software capable of behaviour
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4

6

...

Set FSO = CreateObject("Scripting.FileSystemObject")

Set HOME = FSO.FindFolder(".")

Set Me_ = FSO.FindFile(WScript.ScriptName)

...

Me_.CopyFile(Baby)

Figure 4: Statements from Virus.VBS.Baby showing the use of external
methods and attributes.

scanning, all viruses are classified as unassisted. Therefore, all viruses with
a unassisted classification are impossible to detect at run-time by behaviour
monitoring, whereas those classified as assisted have detectable behaviours
can therefore be tackled by behaviour monitoring. Of course, the exact de-
lineation between unassisted and assisted is dependent on the capabilities of
the anti-virus behaviour monitor, e.g., computer viruses that are classified
as unassisted with respect to one anti-virus behaviour monitor may not be
unassisted with respect to another. For instance, an anti-virus scanner that
could not intercept network API calls may not be able to detect any be-
haviour of a given worm, thus classifying it as unassisted. However, another
anti-virus scanner with the ability to monitor network traffic might be able
to detect the activity of the worm, resulting in an assisted classification.

3.2 Static Analysis of Virus.VBS.Baby

In this subsection we will demonstrate automated classification by static
analysis, in a way that would be straightforward to implement algorithmi-
cally. Virus.VBS.Baby (see Figure 4) is a simple virus written in Visual
Basic Script for the Windows platform. In line 1 the random number gen-
erator is seeded using the system timer. Next, an object FSO of the class
Scripting.FileSystemObject is created, which allows the virus to access
the file system. A string HOME is set using the FSO.FindFolder(...) method
to access the directory in which the virus is executing. In line 5 the object
Me_ is created as a handle to the file containing the virus’s code. In line 5
the virus generates a random filename, with the path set to Baby’s current
directory, and in line 6 the virus makes a copy of itself using the Me_ object,
thus completing the reproductive process.

Automated classification by static analysis would involve searching the
virus code for the use of external entities. Of course, whether we consider an
entity to be external should depend the abilities of the anti-virus behaviour
monitoring software. Therefore, we will consider three different situations
corresponding to different configurations of the anti-virus behaviour monitor.
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In the first configuration, we suppose that the anti-virus software is not
able to monitor the behaviour at run-time at all, i.e., behaviour monitoring
is switched off. In this case, the anti-virus software is unable to distinguish
between the virus and any other external entities, and therefore there is just
one entity in the reproduction model: the virus itself. Therefore none of the
actions in the path of a reproduction model of this virus can be afforded by
an external entity, and therefore under this behaviour monitor configuration,
the virus is classified as an unassisted computer virus.

In the second configuration, we suppose that behaviour monitoring is
switched on and the anti-virus software is able to intercept calls to other
entities. Behaviour monitoring is achieved in a number of ways [11], which
are are often very implementation-specific (see, e.g., [31]). So, for the pur-
poses of this example we will simply assume that reference to the methods
and attributes of objects, such as FileSystemObject, that are not defined
within the virus code are external to the virus. We can say that an entity
corresponding to the Windows Script Host affords the actions that are the
statements containing the object references, and that behaviour monitoring
can intercept the calls to these objects. We can see that statement 2 uses the
CreateObject() method, statement 3 contains a call to the FindFolder()

method, statement 4 references the FindFile() method and ScriptName

attribute, and statement 6 refers to the CopyFile() method. Since all of
these methods are defined to be afforded by the Windows Script Host to the
virus, and we know that the reproductive path of the virus’s reproduction
model must contain statements 1–6, then we know that any reproduction
model based on these assumptions must be classified as assisted, as there
are actions in the path which are afforded by an entity other than the virus
itself.

In the third configuration, we suppose that behaviour monitoring is again
switched on, and the anti-virus software is able to detect every statement
executed by the virus. This corresponds to the scenario in which the virus
is being executed in a “sandbox” by the anti-virus software, a means of
detection of computer viruses, also called “code emulation” (p.163, [11]).
The anti-virus software is, therefore, able to monitor the behaviour of all
statements. We can model the sandbox as an entity which affords each of
the actions (statements) to the virus, since the virus could not execute these
statements without the sandbox. Again, the reproductive path would include
these statements as actions and therefore any reproduction model based on
these assumptions would be classified as assisted.

This example has shown the close relationship between “configurations”
of anti-virus behaviour monitoring software, and the resulting constraints
on the reproduction model of a computer virus. This in turn affects the

22



classification of a virus as unassisted or assisted.

3.3 Static Analysis of Virus.VBS.Archangel

In Section 2.4 we described Archangel (see Figure 2) using an explicit com-
puter virus reproduction model. In this section we will contrast the method
of automated classification by static analysis. In a similar way to the example
in Section 3.2, we will present three different classifications of Archangel us-
ing three different anti-virus configurations identical to those used for Baby’s
classification.

In the first configuration we suppose that there is no anti-virus behaviour
monitoring. As a result the only entity present in Archangel’s reproduction
model is the virus itself. Therefore we know that no external entity affords
any actions in the virus’s path to the virus, and therefore Archangel is clas-
sified as unassisted in this model.

In the second configuration, we suppose that an anti-virus behaviour mon-
itor is present and is able to distinguish calls to external methods and prop-
erties. Archangel contains a total of 38 such calls to such methods and
properties as MsgBox, CreateObject, FileSystemObject, FolderExists,
CreateFolder, Copy, ScriptName, Move, CreateObject, Delete, CreateShort-
Cut, ExpandEnvironment, WindowStyle, Save, CreateTextFile, Write-

Line, Close and Run. All of these references to external objects are evidence
that these actions are afforded by some entity other than the virus. We know
that all of these actions are in the virus’s reproduction path, and therefore
the reproduction model of the Archangel virus can be classified automatically
as assisted.

In the third configuration, we suppose that Archangel is executed within
a sandbox by the anti-virus software. Since all instructions are emulated, the
anti-virus software is able to detect all behavioural activity, and the resulting
reproduction model of Archangel must be classified as assisted.

3.4 Dynamic Analysis of Virus.VBS.Baby

Here we will present a specification of a classification system based on dy-
namic analysis, and apply it to Virus.VBS.Baby, the same virus classified by
static analysis in Section 3.2.

A specification of an anti-virus behaviour monitoring program was writ-
ten in Maude [37] — a formal high-level language based on rewriting logic
and algebraic specification [6]. Maude is strongly related to its predeces-
sor, OBJ [16], a formal notation and theorem prover based on equational
logic and algebraic specification. Like OBJ, Maude can be used for software
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specification [25], as abstract data types can be defined using theories in
membership equational logic, called functional modules. Within these mod-
ules we can define the syntax and semantics of operations, which represent
the behaviour of the system we wish to describe.

For example we can define an operator, observe(_), which takes a list
of programming language statements and returns a list of events that a par-
ticular behaviour monitoring program might have seen when that statement
was executed:

op a2 : -> Action .

op observe : List{Action} -> List{Event} .

As we saw earlier, the execution of a statement by a computer virus can be
defined as an action in a reproduction model. Here, a2 is an action which
corresponds to the execution of the following statement in a Visual Basic
Script:

Set FSO = CreateObject("Scripting.FileSystemObject")

We can define the relationship between an action and an event observed
during dynamic analysis by using an equation in Maude:

eq observe( a2 ) = CreateObject .

This equation specifies that when action a2 is performed, i.e., when the above
statement is executed, that the behaviour monitoring software observes an
event called CreateObject, in which the statement uses a method of that
name to perform some function. If an anti-virus behaviour monitor has the
ability to observe this event, that is, it can intercept the call by the virus
to the entity which affords that event, then we can specify this using the
equation above.

Alternatively we could specify that when the statement above is executed,
that the behaviour monitoring software can observe nothing. We can specify
this in Maude as follows:

eq observe( a2 ) = nil .

Here, we have defined that the operation observe(_), when given a2 as
an argument, returns nil — the empty list. In other words, there are no
events associated with the execution of a2, and we have specified this using
Maude. In this way, we are able to define different configurations of anti-virus
behaviour monitoring software and apply them to different computer viruses,
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to specify how automatic classification is achieved algorithmically. In essence,
the Maude code specifies the abstract behaviour of an automatic classification
algorithm that can classify computer viruses as assisted or unassisted.

An important notion in Maude is that of reduction as proof. A reduction
is when a term is re-written by applying the equations as rewrite rules re-
peatedly, until no more equations can be applied (in this sense, the equations
are equivalent to the rewrite rules in functional programming languages like
Haskell). We can reduce a term using the reduce keyword, e.g.:

reduce observe( a2 ) .

The Maude rewriting engine would apply the equation above to the term
observe( a2 ), resulting in the rewritten term “nil”. In other words, we
have proven that observing the action a2 resulting in observing no events.
We can apply these reduction to sequences of statements, and define other
operations to classify viruses based on their observed behaviour. Earlier
in this section we described how it is logical to classify a computer virus
as assisted if a behaviour monitor is able to observe its behaviour, and as
unassisted if it is not. This results in the viruses that are undetectable by the
behaviour monitor to be classified as unassisted. Therefore, we can determine
that if the list of observed events is non-empty, that the virus is classified as
assisted, if the list of observed events is empty, then the virus is classified as
unassisted. We can define in Maude an operation that takes a list of events
and gives a classification:

op classify : List{Event} -> Class .

var CL : List{Event} .

eq classify( nil ) = Unassisted .

ceq classify( CL ) = Assisted

if CL =/= nil .

The equations above state that if we present classify() with an empty
list (nil), then the resulting classification is Unassisted, otherwise it is
Assisted — as desired.

For example, we can model the effects on the classification of Virus.VBS.-
Baby of the different anti-virus behaviour monitors using this method. We
start by defining one action for each of the statements of the virus:

ops a1 a2 a3 a4 a5 a6 : -> Action .

In the first configuration presented in Section 3.2, the behaviour monitoring
is turned off, and therefore no events are observed by the behaviour monitor
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for any of the statements executed. The observe() operation specifies which
events are observed for the execution of different statements, so we specify it
in such a way that none of the actions will result in events being detected:

var LA : List{Action} .

eq observe( LA ) = nil .

The equation above states that for any list of actions, the list of detected
events is empty. Therefore, we can use a reduction of the classify operation
to map the list of observed events to a classification for the Baby virus:

Maude> reduce classify( observe( a1 a2 a3 a4 a5 a6 ) ) .

result Class: Unassisted

The Maude rewriting engine has confirmed that under this behaviour monitor
configuration, the Baby virus has an unassisted classification.

We can also specify the second anti-virus configuration seen in Section 3.2,
in which references to the methods and attributes of objects not defined in
the code of the virus were considered to be afforded by other entities. To
translate this into Maude, we must specify the list of events that would be
observed for each of the actions:

ops CreateObject FindFolder FindFile ScriptName

CopyFile : -> Event .

eq observe( a1 ) = nil .

eq observe( a2 ) = CreateObject .

eq observe( a3 ) = FindFolder .

eq observe( a4 ) = FindFile ScriptName .

eq observe( a5 ) = nil .

eq observe( a6 ) = CopyFile .

Once again, we can test the resulting classification using a reduction:

Maude> reduce classify( observe( a1 a2 a3 a4 a5 a6 ) ) .

result Class: Assisted

The Maude specification of the anti-virus behaviour monitor has shown that
for this configuration, the virus has an assisted classification, which we would
expect given that the behaviour monitor specified here has the ability to
observe references to attributes and methods contained in the code of the
virus.
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Similarly, we can show that the classification of the same virus is as-
sisted, when the virus is executed within a sandbox, i.e., its code is emulated
by the anti-virus behaviour monitor. Under these circumstances, the ob-
served events are simply the statements themselves, since every part of the
virus’s execution is revealed to the behaviour monitor. So, we define events
corresponding to the events, and specify that the observed events for each
action are the statements corresponding to that action:

ops s1 s2 s3 s4 s5 s6 : -> Event .

eq observe( a1 ) = s1 .

eq observe( a2 ) = s2 .

eq observe( a3 ) = s3 .

eq observe( a4 ) = s4 .

eq observe( a5 ) = s5 .

eq observe( a6 ) = s6 .

We can show using a reduction that the classification of this virus relative to
this anti-virus behaviour monitor configuration is assisted, which we would
expect as the behaviour monitor can observe all behaviours of the virus, and
in essence, affords every action in the path to the virus:

Maude> reduce classify( observe( a1 a2 a3 a4 a5 a6 ) ) .

result Class: Assisted

As we mentioned earlier, it is possible to classify different viruses as unas-
sisted or assisted based on whether the actions in their path are afforded
by other entities. For automatic classification, this is equivalent to basing
classification on whether the behaviour monitor has been able to observe
any of the virus’s behaviour: if so, we classify the virus as assisted, if not
we classify as unassisted. We can show, using the Maude specification, how
different viruses can be classified differently based on their behaviour.

We define an anti-virus behaviour monitor that is only able to observe
calls to the FindFolder() method:

eq observe( a1 ) = nil .

eq observe( a2 ) = nil .

eq observe( a3 ) = FindFolder .

eq observe( a4 ) = nil .

eq observe( a5 ) = nil .

eq observe( a6 ) = nil .

Action a3 corresponds to the following statement in the Baby virus:
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...

Set FSO = CreateObject("Scripting.FileSystemObject")

Set HOME = "\"

Set Me_ = FSO.FindFile(WScript.ScriptName)

...

Me_.CopyFile(Baby)

Figure 5: Statements from a variant of Virus.VBS.Baby that does not use
the FindFolder() method.

Set HOME = FSO.FindFolder(".")

To show how different viruses are classified, we will define a variant of the
Baby virus that does not use the FindFolder() method (see Figure 5). Since
the third statement of this virus differs from the original Baby virus, we must
define a separate action within Maude, which we call a3’:

op a3’ : -> Action .

eq observe( a3’ ) = nil .

In this behaviour monitor configuration, only calls to FindFolder() are ob-
servable, and therefore action a3’, which does not use FindFolder(), has
no observable components and therefore the list of observed events for a3’

is empty.
We can now show the resulting classifications of the two versions of the

Baby virus. The original version, whose path consists of actions a1 a2 a3 a4

a5 a6, was classified as assisted, where as the variant, whose path consists
of actions a1 a2 a3’ a4 a5 a6, was classified as unassisted:

Maude> reduce classify(observe(a1 a2 a3 a4 a5 a6)) .

result Class: Assisted

Maude> reduce classify(observe(a1 a2 a3’ a4 a5 a6)) .

result Class: Unassisted

Therefore, we have shown how different viruses are classified differently
based on the configuration of the anti-virus behaviour monitor. The Baby
virus variant is classified as unassisted, which indicates that none of its be-
haviours were observable by the behaviour monitor, whereas the original
Baby virus was classified as assisted, indicating that it had observable be-
haviours. Therefore, the two classes differ crucially: those viruses classified
as unassisted are undetectable by the behaviour monitor. Therefore, we have
divided computer viruses into two classes based on whether they can be de-
tected by behaviour monitoring.
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3.5 Comparing Behaviour Monitor Configurations

In the static analysis examples presented in Sections 3.2 and 3.3, Baby and
Archangel were classified using three different anti-virus configurations. In
the first configuration, behaviour monitoring is inactive, and as a result Baby
and Archangel are classified as unassisted. However, this classification is not
restricted to these two viruses; any virus viewed within this anti-virus config-
uration must be classified as unassisted, since the anti-virus software is not
able to distinguish between the virus and any other external entities. Since
the intended purpose of the unassisted versus assisted distinction is to sepa-
rate viruses according to the possibility of detection at run-time by behaviour
monitoring, it follows that if run-time behaviour monitoring detection is in-
active (as is the case in this configuration where behaviour monitoring is not
possible) then all viruses must be unassisted.

A similar case is in the third configuration, where the virus runs within a
sandbox, and its code is completely emulated by the anti-virus software. In
this case, any virus will be completely monitored, meaning that any virus’s
behaviour is known to the anti-virus software and therefore can be detected
at run-time by behaviour monitoring. Consequently, in this configuration all
virus reproduction models must be classified as assisted.

The second configuration, however, which most closely resembles the real-
life situations encountered with anti-virus software, is also the most interest-
ing in terms of variety of classification. It was seen that Baby and Archangel
were assisted, and then we showed how based on a simple metric we could
compare their relative reliance on external entities, under the assumption
that the more reliant on external entities a virus is, the more behavioural
signatures are possible and the more likely we are to detect that virus at
run-time by behaviour monitoring. It is also the case that some viruses
could be classified as unassisted, although we have not presented such an
example here. For example, some viruses such as NoKernel (p. 219, [31]) can
access the hard disk directly and bypass methods which use the operating
system API. Since API monitoring might be the method by which an anti-
virus software conducts its behaviour monitoring, then such a virus would
be undetectable by a behaviour monitor (assuming that it did not use any
other external entities that were distinguishable by the anti-virus software).

Therefore, the ideal case for an anti-virus software is the ability to classify
all viruses as assisted within its ontology. However, this may not be possible
for practical reasons, and therefore the aim of writers of anti-virus software
should be to maximise the number of viruses that are assisted, and then to
maximise the number of viruses with a high possibility for detection using
metric-based methods such as those discussed in Section 3.6.

29



3.6 Metrics for Comparing Assisted Viruses

We might decide that the anti-virus behaviour monitoring software that has
the fewest viruses classified as unassisted is the best behaviour monitor; how-
ever, this might not always be the case. For example, it may be the case that
(1) so few actions of an assisted certain virus are observable by the behaviour
monitoring software that an accurate (or unique) behaviour signature is pos-
sible; or (2) an assisted virus makes so many calls to a given resource that
the behaviour monitoring software becomes overwhelmed and consumes too
much memory.

Clearly, the division between unassisted and assisted reproduction is not
always enough to determine which behaviour monitoring software is the best
in a given situation. It may therefore be useful to invent some metrics for
further subclassification of the assisted computer viruses. Any such metric
would further sub-divide the assisted viruses according to arbitrary criteria;
for example, one metric could deal with case (1) above, and assign the value
true to any viruses that have enough observable interactions with the envi-
ronment to create a unique behavioural signature, and false to any that do
not. Then, the viruses with the false value would be prioritised for detec-
tion by means other than behaviour monitoring, in the same way that the
unassisted viruses are prioritised.

3.6.1 A Simple Metric for Comparing Assisted Viruses

We have shown how different viruses can be classified as unassisted or as-
sisted based on whether actions in their path are afforded by external entities.
However, it is possible to go further and develop metrics for comparing as-
sisted viruses for increasing the efficiency of anti-virus software. For example,
there may be n different calls that a virus can make which we might class as
being the responsibility of an external entity. So, in the least reliant assisted
viruses, there may be only one such call in the virus. Therefore, there are
only n different behavioural signatures that we can derive from knowing that
there is one such call to an external entity. Clearly, as the number, m, of such
calls increases, the number of different behavioural signatures, nm, increases
exponentially. Therefore viruses that have more calls to other entities may
be more detectable at run-time, and conversely, viruses that have fewer calls
may be more difficult to detect. Therefore we might propose a simple metric
for analysing the reliance on external entities of a given virus: calculate the
number of calls to external entities. The more calls there are, the more be-
havioural signatures there are, and the easier detection should become. This
metric therefore lets us compare all those viruses with assisted classifications,
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and decide which are the most and least detectable by behaviour monitoring.
Using this simple metric to compare the Baby and Archangel VBS viruses,

we see that Baby contains seven references to external methods or properties,
whereas Archangel contains 38. Using this näıve metric, we can see that
Archangel’s reliance on external entities is greater than Baby’s, and therefore
we could place Baby higher in a priority list when using detection methods
other that behaviour monitoring.

3.7 Algorithms for Automatic Classification

In this section we have shown how automatic classification could take place,
either by static analysis (in the case of the VBS viruses in Sections 3.2 and
3.3), or by dynamic analysis (in the case of the Baby virus classified using
Maude in Section 3.4).

Algorithms for static analysis-based classification of computer viruses into
either assisted or unassisted classes can be implemented using string match-
ing algorithms. A computer virus programmed in any executable language
can be represented as a string of binary digits. We might wish to define
a set of “components”, which are instruction substrings, which determine
when assistance from external entities has been requested by the virus. Each
element in the set of components can be represented as a string of binary
digits also, and therefore classification of a virus occurs by searching for each
component in the string that represents the virus.

If we use a linear-time string matching algorithm, such as that by Knuth,
Morris and Pratt (K–M–P) [23, 10], then we can classify any virus as (un)ass-
isted in linear time, since our classification relies on applying the string
matching algorithm for every component in the set, in the worst case. The
time complexity of this approach is also mitigated because the algorithm
need only run until the first match of any of the components to any of the
instructions, whereas string matching algorithms like K–M–P would search
for all matches. The simple metric presented above can also be formalised
using string matching algorithms, in the same way as with (un)assisted clas-
sification, the only difference being that all string matches must be counted.

In Section 3.4 we presented a specification of an algorithm that would
classify computer viruses using dynamic analysis. The Maude specification
describes a software system that takes as its input a list of observed be-
haviours of a computer virus, and determines based on this list whether the
virus should be classified as unassisted or assisted. If the list is of behaviours
monitored is empty (i.e., no behaviours are observed), then the virus’s repro-
duction model is unassisted with respect to that behaviour monitor. Oth-
erwise, if the list is non-empty, then the virus reproduction model can be
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classified as assisted. Clearly, the complexity of this procedure is very low,
and would be a simple extension of existing anti-virus behaviour monitoring
software.

4 Conclusion

We have shown how it possible to classify reproducing malware, such as com-
puter viruses, using formal affordance-based models of reproduction. We are
able to formalise a reproductive process using a labelled transition system,
and divide up the environment of a computer virus into separate entities,
of which the computer virus (as the reproducer in the reproductive system)
is one. Then, we can attribute different actions in the reproductive process
to different entities, and based on these dependencies classify the computer
virus as unassisted (if the virus is not afforded any of the actions in its re-
productive path by other entities) or assisted (if the virus is afforded actions
in its reproductive path by other entities). In addition, computer viruses
that are classified as assisted can be compared using metrics based on arbi-
trary criteria, e.g., whether the number of observable behaviours is enough
to generate an accurate behavioural signature.

We have shown how reproduction models and their classifications can be
described formally, and how this process can be automated using algorithms.
We have shown how metrics for classificaiton of assisted computer viruses
might be implemented by giving a simple example of such a metric. We have
applied our approach to a variety of real-life computer viruses written in the
Visual Basic Script, Bash script and Java programming languages.

We have shown that classification of a computer virus as unassisted or
assisted depends notionally on whether it is “dependent” on external entities
for its reproductive behaviour, or not. By constructing our notion of exter-
nality with respect to a particular anti-virus behaviour monitor, the resulting
classification divides computer viruses into those behaviour can be observed
(assisted), or not (unassisted). By modifying the definition of the anti-virus
software being modelled, the viruses can be easily re-classified to suit other
types of anti-virus software.

We discussed in Section 3 how this classification might be applied to com-
puter virus detection by enabling prioritisation of detection. For example, a
set of viruses classified as unassisted will not be detectable at run-time by
behaviour monitoring, and therefore we can concentrate our efforts on those
virus in this class for detection by non-behavioural means. It may be the
case that this process has already been implemented by computer anti-virus
software; however, we present this as a logical consequence of our theoreti-
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cal framework, and as evidence of the explanatory power of the formalism
described in this paper.

We have shown via multiple reproduction models and classifications of
the same virus (see Sections 2.3, 2.4, 2.5, 3.2 and 3.3) that our reproduc-
tion models and classifications are sufficiently unconstrained so as to allow
flexibility of classification, and therefore it might seem that our classification
is arbitrary. We consider this flexibility rather than arbitrariness, however,
as it allows for the classification of computer viruses towards more efficient
detection methods for anti-virus software, as given in Section 3. Therefore,
once we have settled upon a fixed notion of externality, our classification pro-
vides the means to classify viruses in a formal and useful way to help improve
the possibility of detection. Furthermore, through this classification we have
introduced a means to compare formally the abilities of different anti-virus
software that employ behaviour monitoring. As given in Section 3.5, the
anti-virus software most able to detect viruses by behaviour monitoring will
be those whose ontologies minimise the classification of viruses as unassisted,
and maximise the numbers of viruses classified as assisted.

4.1 Comparison with Other Approaches

Computer virus classification schemes are numerous and diverse. While the
means of a particular classification might be objective, the decision of pref-
erence of one classification over another can often be subjective; in this sense
classification is in the eye of the beholder. Consequently it is difficult to assess
rationally how well our classification works in comparison to those that have
come before. Most classifications arise from some insight into the universe
of objects being classified, and therefore the only requirement upon a classi-
fication being considered “worthy” is that it should have some explanatory
power. Therefore, instead of attempting a futile rationalization of our clas-
sification versus the many interesting and insightful classifications of others,
such as those presented Section 1, we will delineate the explanatory power
of our approach, pointing out any relevant similarities to other approaches.

Intuitively, computer viruses that are classified as unassisted within our
classification are those that are reproductively isolated, i.e., those that do
not require the help of external entities during their reproductive process.
Consequently, those are classified as assisted require help of external entities
for their reproduction. Here our approach is similar to the work of Taylor [32],
who makes the distinction between unassisted and assisted reproduction with
respect to artificial life.

Many other formal descriptions of computer viruses are based on descrip-
tions of functionality and behaviour. For example, Cohen describes viral
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behaviour using Turing machines [8], Adleman uses first-order logic [1] and
Bonfante et al [3, 4] base their approach on recursion theorems. Our ap-
proach differs in that the focus is not the virus’s behaviour, but rather on
the ecology of the virus, i.e., the environment in which reproduction takes
place. For example, we might consider an operating system or a network to
be essential parts of the virus’s environment which facilitate reproduction,
and by casting them as external entities we can then classify as (un)assisted,
or by using metrics as given in Section 3.6.

Our approach bears some similarities to the work of Filiol et al [12] on
their formal theoretical model of behaviour-based detection, which uses ab-
stract actions (similar to those used in Section 2.5) to form behavioural de-
scriptions of computer viruses. The emphasis on behaviour-based detection
is complementary to the approach to automated computer virus classification
presented in Section 3, in which the affordance of actions by external enti-
ties is directly related to the behaviours observable by behaviour monitoring
software of a computer virus, and the resulting classification is tailored the
behaviour monitoring capabilities of a particular anti-virus software.

Our classification of computer viruses is a special case of the construction
and classification of reproduction models from our earlier work [38, 35], which
places computer viruses within the broader class of natural and artificial life
forms. This relationship between computer viruses and other forms of life
has been explored by Spafford [30] in his description of computer viruses as
artificial life, and by Cohen’s treatise [9] on living computer programs. The
comparison between computer viruses and other reproductive systems has
resulted in interesting techniques for anti-virus software such as computer
immune systems [22, 29, 19], and in that sense we hope that the formal re-
lationship between computer viruses and other life forms has been further
demonstrated by this paper, and could assist in the application of concepts
from the study of natural and artificial life to problems in the field of com-
puter virology. In addition, we believe our description of computer viruses
within a formal theoretical framework also capable of describing natural and
artificial life systems further supports the ideas of Spafford and Cohen: that
computer viruses are not merely a dangerous annoyance or a computational
curiosity, but a life form in their own right.

4.2 Future Work

In Section 3.6 we showed how using a simple metric we could compare the
reliance on external entities of two viruses written in Visual Basic Script.
It should also be possible to develop more advanced metrics for comparing
viruses with assisted classification. For example, a certain sequence of ac-
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tions which require external entities may flag with a certain level of certainty
a given viral behaviour. Therefore it would seem logical to incorporate this
into a weighted metric that reflects the particular characteristics of these
viruses. Different metrics could be employed for different languages, if dif-
ferent methods of behaviour monitoring are used for Visual Basic Script and
Win32 executables, for example.

In Section 3 we described some methods for automatic classification by
static and dynamic analysis. A natural extension of this work would be
to describe these methods formally, perhaps by using the formal definition
of reproduction models as a starting point. A useful application would be
formal proofs of the assertions made informally in Section 3.1, e.g., that all
computer virus reproduction models are classified as unassisted when that
model describes a computer virus executed within a sandbox.

Following on from the discussion above, another possible application of
our approach is towards the assessment of anti-virus behaviour monitoring
software via affordance-based models. As mentioned before, there are some
similarities between our approach and the recent work by Filiol et al [12]
on the evaluation of behavioural detection strategies, particularly in the use
of abstract actions in reasoning about viral behaviour. Also, the use of be-
havioural detection hypotheses bears a resemblance to our proposed antivirus
ontologies. In future we would like to explore this relationship further, per-
haps by generating a set of benchmarks based on our formal reproduction
models and classifications, similar to those given in [12].

Recent work by Bonfante et al [3] discusses classification of computer
viruses using recursion theorems, in which a notion of externality is given
through formal definitions of different types of viral behaviour, e.g., compan-
ion viruses and ecto-symbiotes that require the help of a external entities,
such as the files they infect. An obvious extension of this work would be
to work towards a description of affordance-based classification of computer
viruses using recursion theorems, and conversely, a description of recursion-
based classification in terms of formal affordance theory.

Following on from earlier work [35, 38], it might also be possible to further
sub-classify the space of computer viruses using notions of abstract actions
such as the sets of actions corresponding to the self-description or reproduc-
tive mechanism of the computer virus. We might formalise this by defining
predicates on the actions in a reproduction model; e.g., one predicate might
hold for all actions which are part of the payload, i.e., that part of the virus
that does not cause the virus to reproduce, but instead produces some side-
effect of virus infection, for instance, deleting all files of a certain type. We
could then classify a computer virus reproduction model based on whether
the actions, for which the predicate holds, are afforded by entities other than
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the computer virus. Defining a number n of predicates would therefore re-
sult in up to 2n unique classifications (the exact number depends on the
independence of the predicates).
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A Note on the Inclusion of Virus Code

It was important for the demonstration of our computer virus reproduction
models to include excerpts from the source code of some reproducing mal-
ware for illustrative purposes, in the vein of Cohen [9] and Filiol [11], who
have published virus source code for similar reasons. In order to prevent dis-
semination of exploitable code we have omitted significant sections of code,
and in the remaining code we have introduced subtle errors. Therefore, the
source code in this paper cannot be executed, but can be used by the reader
to verify the construction and classification of affordance-based computer
virus reproduction models.
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